
Adopting Data in Motion:  
The Modern-Event Driven Architecture

Alex Stuart
Advisory Solutions Engineer
astuart@confluent.io
 ajfstuart

The Foundational Assumption of Every Database:
Data at Rest

Data at rest

Slow, daily
batch processing

Simple, static
real-time queries

Databases

Data Is The New Engine
of Business Success

Paradigm for Data in Motion: Event Streams

Rich customer
experiences

Real-time events

Real-time
Event Streams

Cyber Sensor

Healthcare Customer
Data driven
operations

 Basic Event Oriented

Event-Command Oriented

Event Oriented - Asynchronous

Event Oriented Decoupled

● Event Production
○ Everything is a source

○ Native Events

○ DB Transactions

● Events Flow Between
● Data in Motion
● Data at Rest

Modern Architecture

The Rise of Event Streaming

2010

 
created at LinkedIn by 

Confluent founders

2014

2020

80%
Fortune 100
Companies

trust and use
Apache Kafka

Anatomy of a Kafka Topic

1 2 3 4 5 6 8 97Partition 1

Old New

1 2 3 4 5 6 87Partition 0 109 11 12

Partition 2 1 2 3 4 5 6 87 109 11 12

Writes

1 2 3 4 5 6 87 109 11 12

Producers

Writes

Consumer A
(offset=4)

Consumer B
(offset=7)

Reads

So what are the principles of a good
EDA using Data in Motion?

1.Treat Event Data as First Class Citizen

Domain

Domain

Domain

Domain

Data-Centric Approach to Computing

Shipping Data

Joe

Practical example

1. Joe in Inventory has a problem with Order data.
2. Inventory items are going negative, because of

bad Order data.
3. He could fix the data up locally in the Inventory

domain, and get on with his job.
4. Or, better, he contacts Alice in Orders and get it

fixed at the source. This is more reliable as Joe
doesn’t fully understand the Orders process.

5. Ergo, Alice needs be an responsible &
responsive “Data Owner”, so everyone benefits
from the fix to Joe’s problem.

Orders Domain Shipment Domain

Order Data

Inventory Billing Recommendations

Alice

Domain

Inventory

Orders

Shipments

Finance

2. Make Schemas the Contract for Event Streams

Schema
Registry Confluent Schema Registry:

● Supports:
○ Avro
○ Protobuf
○ JSON Schema  

● Can be used with Event
Streams and other
technologies

Schema Evolution - Compatible Changes

• Schemas will evolve!

• Think about backwards and forwards compatibility

• Compatible changes include (for example):

• Adding new fields

• Using default values (improves compatibility rules)

• Removing fields with defaults

Schema Evolution

message User {
 int32 id = 1;
 string first_name = 2;
 string last_name = 3;
}

message User {
 int32 id = 1;
 string first_name = 2;
 string last_name = 3;
 string country_code = 4;
}

Adding fields

message User {
 int32 id = 1;
 string first_name = 2;
 string last_name = 3;
}

message User {
 int32 id = 1;
}

Removing fields 
(eg: PII)

3. Plan for Breaking Changes and Failures

Domain

Event Stream

Remodel the Domain Into:

New Domain A

New Domain B

Collaborative Effort - Coordinate and Plan

Know your event-stream consumers
- Who is affected?
- What are their needs?  

Communicate with them
- Let them know ahead of time of upcoming changes
- Discuss how to fulfil their needs, such as:

- Migrating old data to new format
- Minimizing downtime

Incompatible changes require a rolling upgrade window

Source
Domain

Data with Schema 1.0

Data with Schema 1.1

1. Publish Schema 1.0 (original) and Schema 1.1 (breaking) 

2. Dual publish for a defined period of time  

3. Provide history in Kafka so data can be replayed

4. Create and Empower a Governing Body

- Standards of Interoperability, Policies, and Support

- The minimum requirements for data in the org? (SLAs on changes, uptime, data, etc.)

- How schema changes are proposed, approved and communicated

Domain Domain DomainDomain

Self-Serve Event-Streaming Platform

Decisions can Include:

- What schema format do we use?  

- How do we monitor our applications?  

- How do we impose Access Controls?  

- How do we adhere to our data policies?  

- Etc: What else are the main data concerns of your business?

5. Provide Self-Service Functionality with First Class Support

- Global standards and streamlined support

- Eg: New applications must be in containers

- Eg: New event-driven applications must use Confluent Cloud

- “Paved Roads” - Make it Easy to Use

- Make it easy to build applications using event streams, in the languages and frameworks of your choice.

- Proof-of-concept applications and pilot projects can lead the way

- Focus on making it easy to get things done: reduce toil and overhead.

6. Make Data Easy to Discover and Use

Search through Events, Streams, and Tags

Rely on Event Streams for Historical Data

Consumer
Application

0 1 2 3 4 5 6 7 8 9

Bug? Error?  
New Aggregate?  
Rewind to start of

stream, then reprocess.

Event Streams let your
consumers replay data

as needed.

●Store all the data you need, for as long as you need it. 

●Cheap disk! Compaction!

●Confluent Cloud’s Infinite Storage
○ Fully transparent tiered-storage

Store Event Data For As Long As Necessary

Domain

Inventory

Orders

Shipments

Finance

Self-Service ksqlDB:
Process and Transform Event Streams

ksqlDB

Make it easy to use  
event-stream data

Domain

Inventory

Orders

Shipments

Finance

Self-Service ksqlDB:
Query data however you need it

ksqlDB

2. Query data

1. Create a materialized view
for your use case

7. Rely on Connectors to Bridge Streams and Batch

Kafka

Source
Connectors

https://www.confluent.io/hub/

Event 
Streams

CDC
 Connector

Event Streams Power Realtime & Batch Processing

Streaming
Operational App

Streaming
Analytics

Connector

Connector

Batch-Computed
Analytics

Traditional R/R
Operational AppMillisecond  

end-to-end latency

Event Stream

Both operational and analytical
workloads!

Principles for Building Event-Driven Architectures

5. Provide Self-Service Functionality
Compute and processing frameworks. Connectors.
Create, build, and manage your own the data you
publish for others. 

6. Make Data Easy to Discover and Use
Search for schemas and event data. Preview event
streams. Request access to data. Data lineage views.

7. Rely on Connectors to Bridge Streams
and Batch

Connectors for sourcing and sinking data. Data is
essential for getting EDAs started.

1. Treat Data as a First-Class Citizen
So that it can be relied upon and reused by all users.
Dedicated owners for all key datasets in the organization.  

2. Make Schemas the Contract for Event
Streams

Schema evolution. Confluent Schema Registry. 

3. Plan for Breaking Changes and Failures
Some changes require remodeling existing streams. Plan
for breakages.

4. Create and Empower a Governing Body
Standard. How to validate, publish, change, find, and use
event streams.

Thanks!  
Check out developer.confluent.io

Alex Stuart

 ajfstuart

